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Abstract. We obtain relative geometric inequalities for compact, convex surfaces. In particular, we present several

inequalities comparing the relative area and the relative perimeter with the maximal and minimal relative diameter.

Besides considering the general problem we also consider particular cases where we can obtain sharper results: 1)

the so called fencing problems in which only subdivisions into two regions of the same area are considered, 2) the

subdivisions obtained by planar cuts.

1. Introduction

Relative geometric inequalities regard the division of a given set G into two parts in a way that
some geometric measure is maximized or minimized. Historically the first relative geometric inequalities
considered were for convex subsets G of the Euclidean space. References about these inequalities are [4],
[5],[6], [7], [13].

The problem also makes sense for subdivisions of compact surfaces. As Osserman [12] pointed out the
classical isoperimetric inequality on the sphere obtained by Bernstein [1] is a relative geometric inequality,
because any Jordan curve on the sphere, divides it into two regions.

The aim of this paper is to obtain relative geometric inequalities for compact, convex surfaces. In
particular, we shall present several relative geometric inequalities comparing the relative area, the relative
perimeter and the maximal and minimal relative diameter. Besides considering the general case, we shall
also consider particular cases where we can obtain sharper results.

It is sometimes interesting to consider particular versions of the relative geometric problems:
1) the so called fencing problems in which only subdivisions into two regions with the same area are

considered,
2) the subdivisions obtained by planar cuts.

Though most of the results hold for any dimension we state them only for three–dimensional surfaces.

Definition 1. Let S be a compact surface. The intrinsic distance between two points of S, p and q is:

di(p, q) = min
α
{L(α), α(a) = p and α(b) = q},

where α is a absolutely continuous curve α : [a, b] −→ S and L denotes the length of a curve.

Definition 2. Let S be a compact surface. A region in S is a compact connected subset of S.
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Definition 3. Let R be a region contained in a compact surface S. The diameter of R is:

D(R) = max{di(p, q), p, q ∈ R}.

Remark 1. Usually both notions of intrinsic distance and diameter are defined by means of “inf” and
“sup” instead of “min” and “max”. By standard compactness arguments there is a curve and a pair of
points, respectively, for which the extremal value is attained.

Definition 4. Let S be a compact convex surface and let α be a Jordan curve on S; by the Jordan curve
theorem we know that α divides S into two connected regions R and S \R. We define:

- The maximum relative diameter of R as:

dM (R, S) = max{D(R), D(S \R)},
- The minimum relative diameter of R as:

dm(R, S) = min{D(R), D(S \R)},
- The relative surface area of S as:

A(R,S) = min{A(R), A(S \R)} and

- The relative perimeter of R, P (R, S), as the length of the curve α.

Obviously,

dm(R, S) ≤ dM (R, S) ≤ D(S).

Definition 5. Let S be a centrally symmetric, compact surface. The minimal antipodal distance is:

δm(S) = min{di(p, p′) where p and p′ are antipodal points in S}.

The following lemma extends a remark that Bernstein [1] made for the sphere to all centrally symmetric
compact convex surfaces.

Lemma 1. Let S be a centrally symmetric compact convex surface; if α is a Jordan curve (i.e. a simple
closed continuous curve) on S dividing S into two complementary regions S1 and S2 of equal area, then
α contains two antipodal points.

Proof. From the assumptions of the lemma, we have:
S = S1 ∪ S2,
int(S1) ∩ int(S2) = ∅,
A(S1) = A(S2) = 1

2A(S),
∂S1 = ∂S2 = α.

To each point p of α we can associate its antipodal point p′ with respect to the center of symmetry
of S and so we obtain another simple, closed, continuous curve α′ (the antipodal curve of α) determined
by all the points p′. The curves α and α′ intersect: as S is convex it is homeomorphic to the sphere,
and so if α ∩ α′ = ∅ the Jordan Curve Theorem would imply that S would be divided into three disjoint
regions: the first one S1 bounded by α with A(S1) = A(S)/2, the second one S2 = S′1 bounded by α′

with also A(S′1) = A(S)/2, and the third one S3 between α and α′ with strictly positive area: so we
obtain a contradiction, and α and α′ intersect in at least two antipodal points q and q′.
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¤
We shall often use the properties of geodesics ([10]), which are the curves that minimize the intrinsic

distance:

Theorem 1. ([2], [9]) (Hopf-Rinow’s Theorem) If a length-metric space (M, d) is complete and locally
compact, then any two points in M can be connected by a minimizing geodesic and any bounded closed
set in M is compact.

Lemma 2. Let S be a centrally symmetric compact convex surface. Then there are antipodal points p
and p′ such that di(p, p′) = D(S).

Proof. There are two points p, q with di(p, q) = D(S). Let κp and κq be the shortest path from p to p′

and from q to q′, respectively. The endpoint p′ of κp is the starting point of its antipodal path κ′p. So we
can define the sum κ = κp + κ′p which is just their concatenation. Then κ is a closed curve and divides S
into at least two parts. If q is contained in κ then di(p, q) ≤ di(p, p′) and we are finished. Hence, q and
q′ are contained in different components and so λ = κq + κ′q and κ intersect in two antipodal points x
and x′.

Now we define:
α = path from p to x along κp,
β = path from p to x′ along κ′p,
γ = path from x to q along κq,
δ = path from x′ to q along κ′q.
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By the triangle inequality it follows di(p, q) ≤ L(α + γ) and di(p, q) ≤ L(β + δ). Hence, by symmetry,

D(S) = di(p, q) ≤ L(α + γ) + L(β + δ)
2

=
L(α + β) + L(γ + δ)

2
=

L(κp) + L(κq)
2

=
di(p, p′) + di(q, q′)

2
≤ max{di(p, p′), di(q, q′)}.

Without loss of generality let di(p, p′) ≥ di(q, q′). Then D(S) ≤ di(p, p′) and from di(p, p′) ≤ D(S) it
follows that D(S) = di(p, p′). ¤

In the particular case of surfaces of revolution, D(S) = di(p, p′) where p and p′ are the points deter-
mined by the intersection of S with the axis of revolution.

Lemma 3. Let S be a compact convex surface of revolution around the axis pp′ where p, p′ ∈ S. Then
D(S) = di(p, p′).

Proof. Obviously, di(p, p) ≤ D(S).
Now let a, b be arbitrary points on S. Take a minimizing geodesic joining p and p′ and rotate it twice

to get two minimizing geodesics α and β containing a and b respectively.
We define:

α1 = path from p to a along α,
α2 = path from p′ to a along α,
β1 = path from p to b along β,
β2 = path from p′ to b along β,

p

p′

α
β

a

b

Figure 3

By the triangle inequality it follows di(a, b) ≤ L(α1 + β1) and di(a, b) ≤ L(α2 + β2).
Then,

di(a, b) ≤ L(α1 + β1) + L(α2 + β2)
2

=
L(α1 + α2) + L(β1 + β2)

2
=

L(α) + L(β)
2

= di(p, p′).

¤

Remark 2. D(S) is the length of the “generating curve” (meridian).
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2. Maximum Relative Diameter

Proposition 1. Let S be a compact convex surface. Further let R and S \R be complementary regions
in S. Then

A(R, S)
dM (R,S)2

≥ 0

and the bound is the best possible.

Proof. There is an extreme point p ∈ S and a supporting plane Π0 with Π0 ∩ S = {p}.(See [15]).
We can choose a sequence Πi of planes parallel to Π0 with Πi → Π0 whose intersections with S

determine a sequence of regions, Ri, such that limi→∞A(Ri, S) = 0. Moreover, dM (Ri, S) → D(S) when
i →∞. Then,

lim
i→∞

A(Ri, S)
dM (Ri, S)2

= 0.

¤

R

Figure 5

If we consider the fencing problem case, we obtain the following result:

Proposition 2. Let S be a compact convex surface. Further let R and S \R be complementary regions
in S with equal area. Then,

A(R, S)
dM (R,S)2

≥ A(S)
2D(S)2

,

and the inequality is tight.
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Proof. We have A(R, S) = A(S)/2 and dM (R, S) ≤ D(S). So,

A(R, S)
dM (R,S)2

≥ A(S)
2D(S)2

.

There are points p and q such that di(p, q) = D(S). Take any plane Π containing p and q. It divides
the surface into two parts with measure A1 and A2. If A1 = A2 then we are finished. Else we can
assume that A1 < A2. Now we rotate Π around the axes defined by p and q. The areas A1(ϕ), A2(ϕ) are
changing continuously. Further A1(180) = A2(0) and A2(180) = A1(0) and so A2(180) > A1(180). By
continuity, there is an angle ϕ such that A1(ϕ) = A2(ϕ). Since p and q are contained in A1(ϕ) as well as
A2(ϕ) we have dM (R,S) = dm(R, S) = D(S).

¤

Proposition 3. Let S be a centrally symmetric compact convex surface. Further let R and S \R be
complementary regions in S. Then,

A(R, S)
dM (R, S)2

≤ A(S)
2δm(S)2

,

where δm(S) is the minimal antipodal distance of S.

Proof. Without loss of generality we can assume that S \R is the region with greater area; then S \R
contains another region R′ with exactly half of the area. As a consequence of Lemma 1, there are two
antipodal points in the boundary of R′, x and x′. On the other hand, clearly, A(R, S) ≤ A(S)/2 and the
assertion follows. ¤

This bound is attained by some surfaces like, for instance, the sphere. (Fig. 6).

R

Figure 6

However, there are many surfaces for which this bound is not attained:

Example 1. Let C = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1/100, |z| ≤ 10} and let S = ∂C.

Computing the minimal antipodal distance we obtain that δm(S) = π
10 .

We divide S into two subsets R and S \R. We can assume without loss of generality that p ∈ R.
We distinguish two cases:
(1) p′ ∈ R. In this case dM (R, S) = D(S) = 1/5 + 20 > 1/10 + 10.
(2) p′ /∈ R. If there is a point q ∈ α such that its z-coordinate is 0, then dM (R, S) ≥ di(p, q) =

1/10 + 10; if there is not such a point q, then dM (R,S) is even greater.
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In both cases, (1) and (2), dM (R, S) > π/10, and so the bound is never attained.

Under the special assumption that the distance between any pair of antipodal points is constant, we
can rewrite the bound in Proposition 3 in terms of D(S), and in this case we can also guarantee that the
bound is always attained:

Corollary 1. Let S be a centrally symmetric compact convex surface such that the distance between any
pair of antipodal points is constant. Further let R and S \R be complementary regions in S. Then,

A(R,S)
dM (R, S)2

≤ A(S)
2D(S)2

and the bound is the best possible.

Proof. The proof is an immediate consequence of Proposition 3, and the fact that now δm(S) = D(S).

The bound is attained: There are points p, q on S, such that di(p, q′) = D(S). As in the proof of
Proposition 2 there is a plane Π passing through p and q which divides S into two parts R and R′ with
area A(S)/2 and diameter d(R) = d(R′) = D(S) and so we have equality. ¤

There are several interesting examples of compact, convex, centrally symmetric surfaces such that the
distance between any pair of antipodal points is constant: the sphere, the double disc. Now we are going
to present another example that includes both the sphere and the double disc as particular cases: the
symmetric lens and the symmetric segment.

Definition 6. Let S2 be the unit sphere and let Π be a plane intersecting S2; let C = S2∩Π, and let M2

be the smallest region of S2 bounded by C; let M ′2 be the region obtained from M2 by a symmetry with
respect to Π. L2 := M2 ∪M ′2 is called a symmetric lens. Obviously L2 is a convex, compact, centrally
symmetric surface of revolution around the axis pp′, where p ∈ M2, p′ ∈ M ′2 and the segment pp′ is
orthogonal to Π. We denote by θ the angle between the axis of the sphere S2 orthogonal to Π and the
straight line segment joining the center of the sphere O with an arbitrary point of C.
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Proposition 4. Let L2 ⊂ R3 be the symmetric lens. Then all antipodal points are at the same distance.

Proof. Let x and x′ be two antipodal points of L2. If they belong to C, then both points are in S2, so,
obviously, the curve that minimizes the distance between x and x′ is the arc of meridian with length 2θ.

So, let us suppose that x and x′ do not belong to C. The intersection of the plane through x, x′, p, p′

gives a path from x to x′ with length 2θ. Hence di(x, x′) ≤ 2θ. Let γ be the shortest curve joining x and
x′; then di(x, x′) = L(γ). γ intersects C in at least one point b. Let γ′ be the antipodal curve of γ, and
let b′ be the antipodal point of b, which, certainly, belongs to C. So di(b, b′) = 2θ.

Let us denote by
- γ1 the arc of γ from x to b
- γ2 the arc of γ from b to x′

- γ′1 the arc of γ′ from b′ to x′

- γ′2 the arc of γ′ from x to b′.
So,

L(γ) = L(γ1) + L(γ2) = L(γ1) + L(γ′2) ≥ di(b, b′) = 2θ.

¤
As an immediate consequence from Proposition 4 and Lemma 2 we have:

Corollary 2. The diameter of the symmetric lens is the intrinsic distance between any pair of antipodal
points.

Definition 7. Let B3 := {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} be the unit ball. Let K(s0) := {(x, y, z) ∈ B3 :
|z| ≤ s0 where s0 is a constant such that 0 ≤ s0 ≤ 1}; S(s0) := ∂K(s0) is called a symmetric segment
of the sphere (Fig. 9).

Figure 9
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Proposition 5. Let S(s0) be a symmetric segment of the sphere. Then all antipodal points are at the
same distance.

Proof. The proof is similar to that of Proposition 4, although the argument has to be accommodated. ¤

Now, we are going to compare the maximum relative diameter with the relative perimeter:

Proposition 6. Let S be a compact convex surface and let R and S \R be complementary regions in S.
Then,

dM (R, S)
P (R,S)

≥ 0

and the bound is tight.

Proof. It is sufficient to consider simple closed curves with arbitrary big length. ¤

Proposition 7. Let S be a compact convex surface and let R and S \R be complementary regions in S.
Then there is not an upper bound for the ratio

dM (R,S)
P (R, S)

.

Proof. It is analogous to the proof of the Proposition 1. ¤

If we look for the lower bound of the ratio dM (R,S)
P (R,S) in the case of planar cuts, the first observation is

that the plane providing the optimal case should pass through the center of symmetry, because any other
plane would preserve the maximal diameter and decrease the relative perimeter.

A compactness argument would guarantee that this lower bound exists, and its value depends on the
particular surface that we are considering. If the surface were a surface of revolution its determination
would be a 1-parameter problem.

We can even provide a global lower estimate of this ratio:

Proposition 8. Let S be a compact convex surface and let R and S \R be complementary regions
obtained dividing S by a plane Π. Then,

dM (R, S)
P (R, S)

≥ 1
π

.

The equality is attained if S is a double disc and Π is the plane containing it.

Proof. Let C be the n–dimensional convex body bounded by S. Then, dM (R,S) ≥ D(Π ∩ C), and
P (R, S) = P (Π ∩ C). The bound follows from the well-known inequality D(K)

P (K) ≥ 1
π for planar convex

bodies (see, for instance [14], [16]). ¤

Proposition 9. Let S be a centrally symmetric compact convex surface and let α be a Jordan curve on
S dividing S into two complementary regions, R and S \R such that A(R) = A(S)/2. Then,

dM (R, S)
P (R,S)

≤ D(S)
2δm(S)

.

This bound is not always attained. It is attained in the case that the distance between any pair of
antipodal points is constant.
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Proof. As α divides S into two regions of equal area; Lemma 1 guarantees that α contains two antipodal
points p and p′. Then we have P (R, S) ≥ 2di(p, p′) ≥ 2δm(S) and the inequality follows from dM (R,S) ≤
D(S).

¤

3. Minimum Relative Diameter

Proposition 10. Let S be a compact convex surface and let R and S \R be complementary regions in
S. Then

A(R, S)
dm(R,S)2

≥ 0

and the bound is the best possible.

Proof. There are two points p, q such that di(p, q) = D(S). Let γ be the corresponding path on S of
length D(S) (a half–meridian). Define Rε := {x ∈ S : ∃y ∈ γ such that di(x, y) < ε} as the geodesic tube
with radius ε rounding a half-meridian.

Rε

Figure 10

If ε goes to 0, we have that the surface area of Rε goes to 0 and the minimum relative diameter to
D(S). Then the ratio goes to 0.

¤

If we want to find the lower bound of the ratio A(R,S)
dm(R,S)2 in the case of planar cuts, a compactness

argument would guarantee that this lower bound exists, and its value depends on the particular surface
that we are considering.

As an example we compute this lower bound for the sphere:

Proposition 11. Let S2 be the unit sphere; if α is the intersection of S2 with a plane, α divides S2 into
two complementary regions, R and S2 \R. Then,

A(R, S2)
dm(R, S2)2

≥ 2
π

.

The equality is attained only if R is a half-sphere.
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Proof. Let R the region of S2 obtained subdividing S2 with a plane Π. Computing the relative area and
the minimum relative diameter we obtain:

A(R, S2) = 2π(1− cos ϕ) and dm(R, S2) = 2ϕ,

where ϕ ∈ (0, π/2] is the angle between the axis of the sphere perpendicular to Π and the straight line
segment determined by the center of the sphere and any point of ∂R. (Fig. 11)

Then,

A(R, S2)
dm(R, S2)2

=
π(1− cos ϕ)

2ϕ2
.

This is a decreasing function with respect to ϕ, so the minimum is attained when ϕ = π/2:

A(R, S2)
dm(R, S2)2

≥ 2
π

.

α

R

Figure 11

¤

We have obtained a global lower estimate of this ratio:

Proposition 12. Let S be a compact convex surface and let R and S \R be complementary regions
obtained dividing S by a plane Π. Then,

A(R, S)
dm(R, S)2

≥ 0,

and equality is attained, for instance, for the cylinder and for other non strictly convex surfaces.

Proof. Let C be a cylinder generated by a straight line segment l. Let {Πi} be a sequence of planes
intersecting C and parallel to l such that the distance of Πi to the axis of revolution is 1 − 1/i. These
planes determine a sequence of subsets of C, {Ri} such that A(Ri,C) goes to 0 and dm(Ri,C) goes to c
(length of l) when i →∞ (Fig. 12). Then,

lim
i→∞

A(Ri,C)
dm(Ri,C)2

= 0.

¤
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If we consider the fencing problem case, we obtain the following result:

Proposition 13. Let S be a compact convex surface. Let α be a Jordan curve on S dividing S into two
complementary regions of equal area, R and S \R. Then,

A(R, S)
dm(R, S)2

≥ A(S)
2D(S)2

.

The proof is analogous to the proof of Proposition 2.

Now, we are going to study the ratio between the minimum relative diameter and the relative perimeter.

Proposition 14. Let S be a compact convex surface and let α be a Jordan curve on S dividing S into
two complementary regions, R and S \R. Then

dm(R, S)
P (R,S)

≥ 0

and the bound is the best possible.

Proof. It is sufficient to consider simple closed curves with arbitrary big length. ¤

Remark 3. If we want to compute the lower bound of this ratio in the case of planar cuts, using a similar
argument as in Proposition 8, we obtain:

dm(R,S)
P (R, S)

≥ 1
π

,

where the equality is attained if S is a double disc and Π is a plane containing it.

Proposition 15. Let S be a compact convex surface and let α be a Jordan curve on S dividing S into
two complementary regions, R and S \R. Then there is no general upper bound for the ratio

dm(R,S)
P (R, S)

.
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Proof. There are surfaces for which this ratio is arbitrarily large; consider for instance the ellipsoid of
revolution E2[(a, a, b)] := {(x, y, z) : x2

a2 + y2

a2 + z2

b2 = 1, 0 < a < b}. If b tends to infinity,

dm(R,E2[(a, a, b)])
P (R,E2[(a, a, b)])

attains an arbitrary large value if R is bounded by the circle E2[(a, a, b)] ∩ {z = 0}.
¤

In the particular case of the sphere, we can prove the following result:

Proposition 16. Let S2 ⊂ R3 be the unit sphere. Let R and S2 \R be two regions from S2 obtained
subdividing S2 by a simple closed curve. Then,

dm(R, S2)
P (R, S2)

≤ 1
2
,

and the equality is attained when R is bounded by two half-meridians.

Proof. There are points a, a′ ∈ R and b, b′ ∈ S2 \R such that di(a, a′) = D(R) and di(b, b′) = D(S2 \R).
We distinguish two cases:

(1) If a, a′ ∈ ∂R (or b, b′ ∈ ∂R), then P (R, S2) ≥ 2di(a, a′) ≥ 2dm(R, S2).

(2) If this is not the case for both pairs then at least one of each pair is contained in the interior. Let
us assume that a ∈ int(R), b ∈ int(S2 \R). Because of their definition, a′ and b′ are necessarily antipodal
to a and b, respectively (else the distance could be increased along the great circle containing a, a′ and
b, b′, respectively). In particular, dm(R, S2) = π = dM (R, S2). By appropriate translations on the sphere
we can further assume that a′ ∈ ∂R and b′ ∈ ∂R. Now we consider the curve C antipodal to ∂R. It
connects a with b, which are contained in different components of S2 \ ∂R. By continuity C intersects
∂R and hence ∂R contains two antipodal points and so P (R, S2) ≥ 2π = dm(R, S2).

¤
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